XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps.
نویسندگان
چکیده
XRCC4 and DNA ligase IV form a complex that is essential for the repair of all double-strand DNA breaks by the nonhomologous DNA end joining pathway in eukaryotes. We find here that human XRCC4:DNA ligase IV can ligate two double-strand DNA ends that have fully incompatible short 3' overhang configurations with no potential for base pairing. Moreover, at DNA ends that share 1-4 annealed base pairs, XRCC4:DNA ligase IV can ligate across gaps of 1 nt. Ku can stimulate the joining, but is not essential when there is some terminal annealing. Polymerase mu can add nucleotides in a template-independent manner under physiological conditions; and the subset of ends that thereby gain some terminal microhomology can then be ligated. Hence, annealing at sites of microhomology is very important, but the flexibility of the ligase complex is paramount in nonhomologous DNA end joining. These observations provide an explanation for several in vivo observations that were difficult to understand previously.
منابع مشابه
Single-stranded DNA ligation and XLF-stimulated incompatible DNA end ligation by the XRCC4-DNA ligase IV complex: influence of terminal DNA sequence
The double-strand DNA break repair pathway, non-homologous DNA end joining (NHEJ), is distinctive for the flexibility of its nuclease, polymerase and ligase activities. Here we find that the joining of ends by XRCC4-ligase IV is markedly influenced by the terminal sequence, and a steric hindrance model can account for this. XLF (Cernunnos) stimulates the joining of both incompatible DNA ends an...
متن کاملDifferent DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency*
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DN...
متن کاملAn Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex*
DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/...
متن کاملComparative analysis of the end-joining activity of several DNA ligases
DNA ligases catalyze the repair of phosphate backbone breaks in DNA, acting with highest activity on breaks in one strand of duplex DNA. Some DNA ligases have also been observed to ligate two DNA fragments with short complementary overhangs or blunt-ended termini. In this study, several wild-type DNA ligases (phage T3, T4, and T7 DNA ligases, Paramecium bursaria chlorella virus 1 (PBCV1) DNA li...
متن کاملImpact of DNA ligase IV on the fidelity of end joining in human cells.
A DNA ligase IV (LIG4)-null human pre-B cell line and human cell lines with hypomorphic mutations in LIG4 are significantly impaired in the frequency and fidelity of end joining using an in vivo plasmid assay. Analysis of the null line demonstrates the existence of an error-prone DNA ligase IV-independent rejoining mechanism in mammalian cells. Analysis of lines with hypomorphic mutations demon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2007